
the propagation of stress and deformation waves in pipes one must take into account the 
quasi-two-dimensional nature of the deformed state of the walls. 

. 
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GENERATION OF INTERNAL WAVES UNDER THE COMBINED 

TRANSLATIONAL AND VIBRATIONAL MOTION OF A CYLINDER 

]IN A FLUID BILAYER 

V. I. Bukreev, A. V. Gusev, and I. V. Sturova UDC 532.593 

The analysis of internal waves in an inviscid fluid bilayer has been considered in 
the linear theory for a general form of the motion of the source (see, e.g., [i]). For 
the special case of the motion of a circular cylinder perpendicular to its generatrix, one 
of the interesting regimes occurs when the cylinder, translating parallel to the surface, 
simultaneously performs vertical harmonic oscillations. As shown in [i], the wave field in 
this case depends in an essential way on the oscillation frequency ~. For relatively small 
frequencies waves are excited both in front of and behind the body. When the frequency 
increases above a certain critical value ~, (which depends on the translational velocity 
of the body, the thicknesses of the fluid layers, and the density difference between them) 
wave motion is only possible behind the body. When ~ = ~,, the linear theory of an ideal 
fluid predicts an unbounded growth (as a power law) of the wave amplitude in time, as occurs 
in resonance phenomena of various kinds. The growth of the wave can be bounded either by 
viscosity or by nonlinear effects. The effect of viscosity was considered in [2] for a 
similar plane problem involving excitations created by a horizontally oscillating cylinder 
moving in a lower layer of an infinite fluid bilayer. In the problem considered in [2], it 
was assumed that the viscosity was nonzero only in the upper layer. Nonlinear effects have 
been analyzed in [3, 4], where for the special case of a uniform fluid, nonlinear boundary 
conditions on the free surface were taken into account. The behavior of internal waves in 
a linearly stratified fluid has been studied theoretically and experimentally for various 
types of the motion of the body (see, for example, [5]). The formulation of the problem 
closest to the one considered here is that of [6]. 

In the theoretical part of the present paper we are concerned mainly with taking into 
account viscosity in the framework of the linear model. We also performed experiments in 
which the critical and near-critical regimes were studied. The present paper is a continua- 
tion of [7], where theoretical and experimental results were presented for internal waves 
generated by the vertical harmonic oscillations of a submerged cylinder in a bilinear of 
viscous fluid with surface tension at the boundary. 

In the theoretical solution of the linear problem for the behavior of internal waves 
generated by a moving circular cylinder, the cylinder is modelled as a point dipole. The 
fluid is assumed to be incompressible, is at rest in the unperturbed state, and consists of 
two infinitely deep layers with small viscosities; the density of the fluid in the upper 
(y > 0) and lower (y < 0) layers are Pl and 22 = Pl(l + e)(~ > 0), respectively, and the 
dynamical coefficients of viscosity are ~I and D2. The surface tension on the boundary 
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between the layers is a. The y axis is directed vertically upward, the horizontal x axis 
lies in the unperturbed surface. It is assumed that at t = 0 in the fluid in the upper 
layer a dipole of variable dipole moment M(t) (M(t)~O and t < O) begins to act and the 
trajectory of the dipole has the form X = Y(t), where X == (x, y), Y(t) == (y~(t), ya(t)). In a 
uniform infinite fluid, this is equivalent to the motion of a circular cylinder of radius 
R with velocity U(t) -- (Ul(t), U~(t)) (the dipole moment is equal to M(t) = 2 ~2 U ( t ) ,  - dY/dt = U(t)). 
Finally an expression for the function ~(x, t), describing the vertical displacement of the 
surface between the two layers induced by the motion of the cylinder in the upper layer can 
be written as (for a detailed discussion, see [7]) 

2R~ y 
- -  [ lkdk [U~ (~) sin k (x - -  Yi (Ti) - -  U~ (~) cos k (x - -  y~ (~))1 

0 o 

where 

e [Cos o) (t -- T) -- ~ sin o) (t -- z d~, 

~oCk) = ~(k) - -  X(k); 

?~(k) = [(pz--p~)gk ~- a~I/(p,+P~) is the dispersion relation for free waves in an ideal in- 
finite bilayer when surface tension is taken into account; 

k V zv (k) %%~,~0 . :k ~ ( o ~  + ~ )  . 

(k) = (P1 ~_ ~) ( lr_7~ ' + l r ~ ) '  x (~0 = x (~) + ( ~ + ~ ) (  1/'~7,+ Y ~ )  '~' 

and g is the acceleration of gravity. 

The superposition of a horizontal translational motion and a vertical oscillations of 
the cylinder yields for the center of the cylinder a trajectory of the form 

y t ( t )  = U o t ,  y a ( t )  = h + a sin fit. (3 )  

I f  t h e  a m p l i t u d e  o f  t h e  o s c i l l a t i o n s  o f  t h e  c y l i n d e r  a r e  asumed t o  be s m a l l  ( a l  = a / h  << 1 ) ,  
t h e  s o l u t i o n  (1 )  f o r  m o t i o n  o f  t h e  form (3 )  can be  l i n e a r i z e d  in  a l ,  and t r a n s f o r m i n g  t o  a 
moving c o o r d i n a t e  s y s t e m  xx = Uot - x ,  i t  can  be w r i t t e n  as  

where  ~o (x~ t) = --  U o y dk A (k~ p) sin k (Uop --  x~) dp; 
o o 

oo t 

~o (~. t) = m S dk ~A (k~ p) ~o~ up co~ k (sop - ~,) dp; 
o o 

(4) 

oo t 

~], (x,, t) = Qh ~ dk y A (k, p) sin ~p cos k (UoP -- x,) dp, 
o 0 

2kR' -hh-X (cos~p--~sin~p). 

(5) 

The term no in the limit t + = describes the stationary wave motion arising from the stream- 
lining of the cylinder by a uniform flow with velocity U 0. The asymptotic behavior of this 
function is studied in the limit x I, t + ~ using the method of stationary phase. Considering 
only stationary points which are near the inviscid solution, and without the inclusion of 
surface tension (o = O) we obtain 

2 ~ R 2 U  0 [ ] (6 )  Tio, ~ ~ [ ~ ] k o e x p [ _ k o h ~ , ( k o ) x l ]  sinkox ~ + ~(kO)cos'koxl (xl, " t -~oo)~ 

~-~=Uo---[~-~o ] +~i~0 ; g1=eg/(2+s),~ a,=xk -a/4 ; and k0 is the root of the where 

. [U-*/~' equation oqks/4 -I- Uok */2 -- g~/2 _--_ 0 ; for small ~i the approximate equation k 0 ~ st~ 0 ,-- 

a~g]/a/2U~) a can be used. The solution (6) compares well with the numerical calculations 

presented in [8]. 
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Fig. i 

The asymptotic behavior of the functions Gs and Gc are studied in a similar way. 
phase functions in the integrals (4) and (5) are 

�9 ~,~(k~ p) = k(Uop - xO i pLQ. + ~(k)l~ 
�9 ~,~(k, p) = k(Vop - xO +_ p [~  - ~ ( k ) l .  

The 

T]he stationary points are the solutions of the system of equation 

a ~ t a k  = o, a ~ l a p  = o (~ = 1, . . . ,  4). 

~e simplest case is that of an ideal fluid without surface tension (~l = ~2 = o = 0). In 
t:his case the function ~ has no stationary points and the only stationary point of ~2 is 
given by the expression 

and it exists only when x I > O. The function Y3 has two different stationary points when 

< ~, = gl/4U0: 

217o , P 2 a = ~  I-T gl:-4Uo~) , 

where the point k2, P2 contributes only when x I < 0 and the point k3, P3 contributes only 
when x I > O. When ~ = ~, the function ~3 has a multiple stationary point, which corresponds 
to a resonant excitation of a driven wave. When ~ > ~, there are no stationary points of 
~3- The function ~4 has a single stationary point only when xl > O: 

k , =  ( l/Qv46'~ = xl ( Q 
gi 

Hence, when ~ > ~, there exists two waves propagating downstream and when fl < ~, there 
are four waves, three of which propagate downstream and one upstream. 

When surface tension is taken into account, numerical methods must be used to determine 
the stationary points, independently of whether the viscosity is taken into account. The 
total number of waves in this case can be as many as six. The presence of viscosity means 
that because of the exponential factor in (4) and (5), the resonant divergence of the 
solution at ~ = ~, is removed, and the damping effect of viscosity at relatively long wave- 
lengths is more significant for internal waves on the surface than for surface waves. 

The experimental set-up is shown schematically in Fig. i, where 1 is the free surface, 
2 is a self-moving trolley, 3 is an actuator for vertical oscillations, 4 is the trajectory 
of the axis of the cylinder, 5 is the surface, 6 is a fixed wavemeter, 7 is the bottom of 
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the channel, and 8 is its lateral wall. The most significant parameters of the problem are 
also shown. Water was used as the lower layer and kerosene was used as the upper layer. 

The deflection D of the surface from the equilibrium position was measured as a function 
of time for 0 ! t ! tl at several fixed values of x = x,. The time t I was chosen such that 
the wave reflected from the lateral wall of the channel did not as yet reach the point x, at 
the instant of detection. The parameter U0 and ~ were varied. The other quantities, upon 
which N depends in the general case, were held constant: L = 4.8 m, s > 40 cm, h I = 15 cm, 
h 2 = 30 cm, D = 2R = i cm, a = 0.5 cm, h = 2 cm, Pl = 0.8 g/cm 3, Q2 = i g/cm 3, Di = 0.01296 
g/(cm-sec), ~2 = 0.0108 g/(cm-sec), o = 34"10 -3 N/m, ~i = 27"10-3 N/m. The width of the 
channel was B = 20 cm and the gap between the lateral walls of the channel and the faces 
of the cylinder was 0.2 cm. Measurements at different points along the width of the channel 
showed that the wave was practically two-dimensional. 
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The maximum value of q in the experiment was of order i mm, and the characteristic 
frequency of the oscillations did not exceed 1.5 Hz. The displacement q was transformed 
into an electrical signal, as in [7], by wavemeters, in which the significant difference 
between the electrical conductivities of the two layers is used. The transformation was 
linear, with a sensitivity of order i00 mV/mm, a lower threshold of about 50 p, and uniform 
frequency characteristics, at least between 0 and 4 Hz. The electrical signal was detected 
by a two-channel recorder with suitable characteristics. 

The main attention in the experiment was focused on the aforementioned critical and 
near-critical regimes. Here the function q(t) was quite complicated and it was difficult 
to formulate a rigorous quantitative treatment of the random errors of measurement for this 
quantity. We note that repeated measurements under the same conditions showed that the 
phase diagram of the fundamental wavetrain was reproduced to within the accuracy of the 
scale of the recording and the largest wave amplitude varied by !i0%. 

Figure 2, curve 3 shows the dispersion dependence (2), describing the relation between 
the wavenumber k and the frequency ~ for internal waves with the parameters given above. 
This dependence is well supported by earlier experiments [7]. The function w(k) is 
symmetric with respect to the k axis. For comparison we show the upper branches of the 
dispersion curves for inviscid fluids (PI,2 = 0, curve 2) and for pure gravity waves 
(Ul,2 = 0, o = 0, curve 4). 

In order to determine which of the possible vibrations are excited in the system by a 
given excitation, the dependence w,(k) characterizing the excitation must be plotted in the 
(k, m) plane. For the problem considered here ~,(k) is the set 

~ ,  (k) = Wok,: Uok + ~, Uok -- n}, 

whose s e p a r a t e  f u n c t i o n s  a r e  l a b e l e d  in  F i g .  2 by t h e  f i g u r e s  5,  l ,  and 6. For  a p u r e l y  
v i b r a t i o n a l  m o t i o n  o f  t h e  c y l i n d e r  ~ ,  = ~ ,  and f o r  p u r e l y  t r a n s l a t i o n a l  m o t i o n  ~ ,  = +_U0k. 
The p o i n t s  o f  i n t e r s e c t i o n  o f  ~ , ( k )  and ~(k)  d e t e r m i n e  t h e  v a l u e s  o f  k and ~ o f  t h e  e x c i t e d  
waves. 

The critical regimes correspond to the points of tangency of m,(k) and w(k). Two such 
regimes were realized in the experiments: regime I with U 0 = 8.44 cm/sec, ~/2~ = 0.51 Hz, 
and regime II with U 0 = 11.9 cm/sec, ~/2~ = 0.36 Hz. The quantity ~U0/g was 0.248 and 
0.247 in these two cases, respectively, and in both cases the point of tangency lies in the 
region of pure gravity waves. Regime III was also realized with U 0 = 4.28 cm/sec, ~/2~ = 
1.03 Hz, for which ~U0/g:= 0.254, such that for gravity waves this would be a critical 
regime. But in a system with surface tension there exist only intersection points of ~(k) 
and m,(k) in this regime. The quantity U 0 was varied in the neighborhoods of regimes I and 
Ill. 

In Fig. 3 we show a succession of records of ~(t) in regime I, taken by wavelengths 
placed at different distances x, (curves i through 6 correspond to the values x, = 0.25; 
0.5; i; 1.5; 2; 2.5 m). The time is measured from the start of motion of the cylinder. 
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The parameters U0, ~, and a became constant after a time not larger than 0.2 sec. The records 
were taken up to the instant of stopping of the cylinder and the arrival of the reflected wave 
at the point of measurement. The times where the axis of the cylinder passed above the wave- 
meters are noted by vertical !ines. 

We see from Fig. 3 that in the critical regime, the wave field exists both in front of 
and behind the cylinder and there is a sharp change in the vibration frequency of the free 
surface below the cylinder. In this regime the curves m(k) and m,(k) have three common points: 
a point of tangency on the upper branch of the dispersion curve, and two intersection points; 
one on the lower branch of ~(k), and the other on the upper branch. Therefore three stationary 
waves are excited in the system with wavelengths and frequencies corresponding to these points. 
The only wave that is propagated in front of the cylinder is the wave corresponding to the point 
of tangency. Behind the cylinder there is a superposition of all three waves. 

If the maximum amplitude of the wavetrain is compared with the maximum amplitudes resulting 
from purely translational motion with U0 = 8.44 cm/sec or purely vibrational motion with 
~/2~ = 0.51 Hz, then one may note the significant change not only in the phase relation, but 
also in the maximum amplitudes of the waves. In particular, for purely translational motion, 
waves were not excited in the system at all for U 0 < 9.6 cm/sec because of the effect of the 
surface tension (the curve ~,(k) = U0k did not intersect w(k) in this case). For purely 
vibrational motion of the cylinder with ~/2~ = 0.51 Hz the wave amplitude did not exceed 0.03 

Variation of U 0 in the neighborhood of the critical value showed that growth of the waves 
of the kind occurring in resonance phenomena in dynamical systems with significant damping was 
evident in the neighborhood of the critical regime. The phase relation of the waves also 
changed smoothly. This indicates that it is fundamentally necessary to take into account 
viscosity in the mathematical model. 

Figure 4 shows a comparison of the calculated and experimental data for regime I at 
x,., = 1.5 m (i is the calculation performed by a numerical integration of (i) with yl(t) = 
U](t), y2(t) = h - a sin ~t and the parameters of the motion given above; 2 is the experimental 
curve). There is agreement in all cases except the following: I) in the calculations it was 
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assumed that L, B + ~; arguments for the validity of this assumption were given above; 2) 
the calculations were done for hl,2 § ~; this has not led to significant disagreement with 
earlier experimental data (see, for example, [7]), and also this is supported by visual ob- 
servations of the free surface; 3) in the theory the dipole imitating the cylinder is 
turned on instantaneously, whereas in reality the time for U0, S, and a to reach constant 
values is small but finite. This leads to an ambiguity between the calculations and the 
experiment of the points of the trajectory of the cylinder where it passes above the wavemeter. 

The latter effect can be estimated by varying the initial phase # of the vibrational 
motion of the cylinder between 0 and 2~ in both the calculation and the experiment. In the 
calculated results essentially the only effect is a displacement of the point of the 
stationary wave train at which the vibrational frequency of D changes. Because of the fact 
that h was not sufficiently large in the experiment, there was also a variation of the maxi- 
mum value of ~ in the wavetrain of about 10%. The calculation and experiment were compared 
by choosing experimental records and calculations in which the change of the vibrational 
frequency occurred at the same point. 

The critical regime II was considered in order to examine the situation for longer wave- 
lengths, when the viscous damping is weaker. Unfortunately the values of n were so small in 
this case that they could not be detected, even with extremely sensitive wavemeters. One 
can only conclude that the growth of the waves is bounded in this regime. 

On the other hand, amplification of waves for a complex excitation (in comparison with 
that which occurs for the separate components of the wave) can be observed in noncritical 
conditions as well. An example is the data for regime III with x, = 1.5 m as shown in Fig. 5 
(i shows the calculated result from (3); 2 shows the experimental result). In this case 
only waves in front of the cylinder are amplified. At this distance x... the wavetrain becomes 
practically constant. Its characteristic frequency is determined by the intersection point 
of ~(k) and ~,(k) = U0k + ~. 

In Fig. 6 the calculated results are shown for regime III with x... = 0.25 m, with the 
same conditions as in Fig. 5 and with (curve i) and without (curve 2)"the effects of viscosity 
and surface tension. 

The data of Figs. 4 through 6 shows that the inclusion of viscosity, even in the linear 
theory, leads to fairly good agreement with experiment, particularly for the phase diagram of 
the waves. The somewhat too large wave amplitudes in the calculations are apparently due to 
the omission of the nonlinear terms in the boundary condition on the free surface. 
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